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CHENYANG XU

1. Exercises for Minimal model program and its applications in higher
dimensional geometry

Question 1.1. Let S be the blow up of a point p ∈ P2.

(1) Compute the generators of NE(S).
(2) Compute the shape of Nef(S) under the identification of N1(S) = N1(S).

Question 1.2. Let X be the blow up of a point p ∈ P3.

(1) Compute the generators of NE(X).
(2) Compute the shape of Nef(X) under suitable natural basis.

Question 1.3. Let X be a surface such that KX
∼= OX e.g., X is K3-surface or

Abelian surface. L is a big and nef line bundle on X. Prove h0(X,L) ≥ 2.

Question 1.4. Let X be a projective variety with Gorenstein singularities. Assume
X has a crepant resolution, i.e. there is a resolution f : Y → X such that f∗(ωX) =
ωY . Then prove that for a big and nef line bundle L on X, Hi(X,ωX ⊗ L) = 0.

Question 1.5 (Examples of round cones). Exercise 32 in [Kol08].

Question 1.6. Prove the surface singularities xy = zn+1 of type An is canonical.

Question 1.7. Let (X,∆) be a pair such that X is normal variety and KX + ∆ is
Q-Cartier. Let f : Y → X is a finite dominant morphism from a normal variety.
Define ∆Y by

f∗(KX + ∆) = KY + ∆Y .

Then a(E,X,∆) ≥ −1 (resp. > −1) for any divisor E if and only if a(EY , Y,∆Y ) ≥
−1 (resp. > −1) for any divisor EY .

Question 1.8. Let (X,∆) be a klt pair, then show the set

{E | a(E,X,∆) < 0}
is a finite set.

Question 1.9 (Cone singularities). Exercise 70 in [Kol08].

Question 1.10. Let (X,∆) be a n-dimensional pair such that X is normal variety
and KX + ∆ is Q-Cartier. Fix a point x on X, we define mldx(X,∆) to be

min{a(X,∆, E) + 1|CenterX(E) = x}.
1. Prove if x ∈ X is smooth, then mldx(X) = n.
2∗. Prove that for any ∆ ≥ 0 and x ∈ X, mldx(X,∆) ≤ n and the equality holds if
and only if X is smooth at x and Supp(∆) does not contain x.
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Remark: Part 2 is open except in lower dimension. In fact, for a fixed dimension
n, it’s not even know that mldx(X,∆) is bounded from above by a number which
only depends on n.

Question 1.11. Let f : X → Y be a birational morphism from a projective smooth
surface to a normal surfae. Let p ∈ X and f−1(p) =

∑m
i=1Ei, then prove the

matrix (gij)1≤i≤m whose entries gij = Ei · Ej is negative definite.

Question 1.12. (1) Let f : X → Y be a projective birational morphism from a
smooth rational surface to a normal surface. Assume f(E) is a point for a curve
E on Y , assume KX · E < 0, then prove E is a (−1)-curve.
(2) Use this to prove that given a normal surface singularity y ∈ Y , among all its
resolutions, there is a unique minimal resolution f : X → Y such that KX ·E ≥ 0,
for any E with f(E) = y.

Question 1.13. Prove Theorem 3 in [Kol08].

Question 1.14. Exercise 19 in [Kol08].

Question 1.15. Exercise 38-46 in [Kol08].

The following facts have been used a few times in our argument. It has a central
importance in higher dimensional geometry.

Question 1.16. Let (X,∆) be a lct pair and M 6= 0 be a Cartier divisor.

(1) if M is a general member in a base point free linear system |L|, then for
any c < 1, (X,∆ + cM) is klt.

(2) Define the log canonical threshold of (X,∆) with respect to M to be

lct(X,∆;M) = max{t|KX + ∆ + tM is log canonical}.
Show lct(X,∆;M) ∈ (0,∞).

(3) Assume a linear system |L| has base locus B. Let M1, ..., .Mm be m general
divisors in |L|. Let c = lct(X,∆;

∑m
i=1Mi). Show that for m � 0, the

divisor E such that

a(E,X,∆ + c

m∑
i=1

Mi) = −1

has its center contained in B. (Such center is called a log canonical
center).

Question 1.17 (Tie-and-break). Let (X,∆) be a klt pair, M a big divisor. Let
c = lct(X,∆;M). Prove that for any ε > 0, we can always find a Q-divisor M1

such that M1 ∼Q c1M with |c− c1| < ε and (X,∆ + c1M1) is log canonical and has
precisely one divisor E such that a(E,X,∆ + c1M1) = −1.

Question 1.18. Show that if X and Y are birational, and both of them have
canonical singularities, then

H0(X,mKX) ∼= H0(Y,mKY ).

Question 1.19. Let X → C be a projective semistable family over a smooth curve
compactifying a smooth family X0 → C0 = C \ {p}. Let π : B → C be a finite
morphism between smooth curves, and let XB be a projective semistable family
which compactifies the family X0 ×C0 B0 where B0 = π−1(C0). Prove

π∗R(X/C,KX/C) = R(XB/B,KXB/B).
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Question 1.20. Use conclusions in the above questions to show that the KSBA
limit doesn’t depend on the semistable reduction.

Question 1.21 (Kollár-Shokurov Connectedness Theorem). Let (X,D) be a log
pair, i.e., X is normal, D is an effective Q-divisor. Assume KX +D is Q-Cartier.
Let f : Y → (X,D) be a log resolution and write

f∗(KX +D) +
∑

i,ai>−1

aiEi +
∑

j,bj≤−1

bjFj = KY ,

where Ei and Fj does not have common components. Then prove that SuppF =∑
j Fj is connected in a neighborhood of any fiber of f .
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